外国黄片网站黄色片一级视屏|国产视频-日美不卡在线视频|看欧美1级1级1级生活片儿|青青草人人插青青操干日AV|青青操在线免费观看av|一级成年国产中文字幕av一|美女黄黄视频骚货网站在线观看|欧美一级做一级a做片|少妇高潮一区二区三区99|丁香五月蜜桃久久久亚洲精品成人

Chinese, Japanese scientists identify new material for making quantum computers

Source: Xinhua| 2018-03-09 03:28:45|Editor: Mu Xuequan
Video PlayerClose

WASHINGTON, March 8 (Xinhua) -- Chinese and Japanese researchers have found a new kind of topological superconductor that can become a promising candidate in making the future quantum computers.

In a paper published on Thursday in the journal Science, Zhang Peng, a post-doctoral researcher at University of Tokyo, and his colleagues attained three key types of measurement necessary to analyze the quantum phase of Fe (Te, Se) in detail.

They confirmed that the surface of the material is suitable to support an exotic quasiparticles called Majorana bound states (MBSs). The MBSs was first proposed by Italian theoretical physicist Ettore Majorana. Utilizing the properties of MBSs is now believed as a promising path towards topological quantum computing.

According to researchers, the Majorana bound state, existing on edges of two-dimensional topological superconductors, is a fermion that is its own antiparticle. An exchange of two MBSs can result in the change of the system state, thus offering possibilities for quantum computing.

Quantum computers are poised to revolutionize society by tackling problems that conventional computers cannot. But most quantum computers currently in development are susceptible to the problem of decoherence, where the quantum state that encodes information degrades, which causes intolerable computing errors.

Zhang Peng told Xinhua, "a solution would be to develop topological quantum computers, where the integrity of the quantum state is protected by the topological properties of the system."

"In topological state, the local noises cannot disturb the topological properties unless the noises are so loud to cripple the whole system," Zhang explained.

But identifying materials that would be suitable to host MBSs is extremely challenging, according to Zhang.

He said this is the first time that the topological superconducting is found on crystals of Fe (Te, Se).

Unlike other topological superconductors identified to date, Zhang's team created the topological superconducting in a single crystal, on which the stable MBSs can be achieved relatively easily.

"It can promote the development of quantum computing," he said.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105091370256301