外国黄片网站黄色片一级视屏|国产视频-日美不卡在线视频|看欧美1级1级1级生活片儿|青青草人人插青青操干日AV|青青操在线免费观看av|一级成年国产中文字幕av一|美女黄黄视频骚货网站在线观看|欧美一级做一级a做片|少妇高潮一区二区三区99|丁香五月蜜桃久久久亚洲精品成人

Scientists develop low-cost energy-efficient materials

Source: Xinhua| 2019-04-25 16:43:14|Editor: xuxin
Video PlayerClose

LOS ANGELES, April 24 (Xinhua) -- An international team of scientists has developed new energy-efficient iron-based alloys which combine high mechanical and magnetic properties at a low cost, and open up new opportunities for industry.

The research results are to be published in the Journal of Alloys and Compounds.

Nowadays, scientists from different countries are facing the task of creating new materials which would help reduce losses in electricity transmission and transformation.

To meet the goal, scientists engaged in the development of amorphous softmagnetic alloys in low-cost alloy systems such as Fe-Si-B-Nb-Cu (iron-silicon-boron-niobium-copper).

The international research team consists of scientists from the National University of Science and Technology "MISIS" (NUST MISIS), which is a Russian technical university, Tianjin University of China, as well as from Japan and the United States,

"For the development of new alloys based on iron with a high complex of magnetic and strength properties, we have analyzed a large number of alloy compositions," said Andrei Bazlov, one of the authors of the study, an engineer at NUST MISIS.

"At the same time, we tried to avoid the use of expensive alloying elements, such as niobium and molybdenum. All the alloys examined in the work were obtained using industrial technology -- quenching from a liquid state (melt spinning technic)," Bazlov added.

According to him, the analysis of a large number of Fe82-85B13-16Si1Cu1 alloys allowed scientists to determine the effect of their chemical composition and heat treatment modes on the magnetic and mechanical properties.

As a result, they managed to obtain alloys with high magnetic properties, technological plasticity, and ultrahigh strength.

Scientists will continue to develop new compositions and processing regimes of amorphous magnetically soft alloys. They are also planning to implement their developments in the industry, according to a release of NUST MISIS.

KEY WORDS:
EXPLORE XINHUANET
010020070750000000000000011100001380089901